import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
df = pd.read_csv("position_wise_salary.csv")
x = df[["Level"]].values
y = df["Salary"]
polynomial_regressor = PolynomialFeatures(degree=4)
x_polynomial = polynomial_regressor.fit_transform(x)
linear_regressor_model = LinearRegression()
linear_regressor_model.fit(x_polynomial, y)
print(linear_regressor_model.predict(polynomial_regressor.fit_transform([[5.5]])))
print(linear_regressor_model.predict(polynomial_regressor.fit_transform([[7]])))
print(linear_regressor_model.predict(polynomial_regressor.fit_transform([[8.5]])))
[132148.43750003]
[184003.49650349]
[387705.69274467]
import matplotlib.pyplot as plt
plt.xlabel("Level")
plt.ylabel("Salary")
plt.scatter(x, y, color="purple", marker="*")
plt.plot(x, linear_regressor_model.predict(x_polynomial), color="orange")