import pandas as pd
from sklearn.linear_model import LinearRegression
df = pd.read_csv("homeprices_multivariate.csv")
x = df[["area", "bedrooms", "age"]].values
y = df["price"]
linear_regressor_model = LinearRegression()
linear_regressor_model.fit(x, y)
print(linear_regressor_model.predict([[2900, 3, 45]]))
print(linear_regressor_model.predict([[3000, 4, 20]]))
print(linear_regressor_model.predict([[3500, 5, 35]]))
[337429.55088815]
[525277.25198079]
[475479.85615775]
# Cross verify using Multiple Linear Regression formula.
def predict_using_formula(x1, x2, x3):
a0 = linear_regressor_model.intercept_
coefficients_arr = linear_regressor_model.coef_
a1 = coefficients_arr[0]
a2 = coefficients_arr[1]
a3 = coefficients_arr[2]
y = a0 + a1 * x1 + a2 * x2 + a3 * x3
print(y)
predict_using_formula(2900, 3, 45)
predict_using_formula(3000, 4, 20)
predict_using_formula(3500, 5, 35)
337429.5508881467
525277.2519807946
475479.8561577523